Effects of vaspin on pancreatic β cell secretion via PI3K/Akt and NF-κB signaling pathways
نویسندگان
چکیده
Vaspin (visceral adipose tissue-derived serine protease inhibitor) is a recently discovered adipokine that has been implicated in diabetes mellitus and other metabolic disorders. However, the effects of vaspin on pancreatic β cell function and related mechanisms are not fully understood. Thus, the present study was performed to investigate the effects of vaspin on pancreatic β cell function and the potential underlying mechanisms. Both in vitro (rat insulinoma cells, INS-1) and in vivo (high fat diet fed rats) experiments were conducted. The results showed that vaspin significantly increased INS-1 cell secretory function. Potential mechanisms were explored using inhibitors, western blot and real-time PCR techniques. We found that vaspin increased the levels of IRS-2 mRNA and IRS-2 total protein, while decreased the serine phosphorylation level of IRS-2 protein. Moreover, vaspin increased the Akt phosphorylation protein level which was reversed by PI3K inhibitor ly294002. In addition, vaspin increased the phosphorylation levels of mTOR and p70S6K, which was inhibited by rapamycin. Meanwhile, we found that the NF-κB mRNA and protein levels were reduced after vaspin treatment, similar to the effect of NF-κB inhibitor TPCK. Furthermore, vaspin increased the glucose stimulated insulin secretion (GSIS) level, lowered blood glucose level and improved the glucose tolerance and insulin sensitivity of high fat diet fed rats. Hyperglycemic clamp test manifested that vaspin improved islet β cell function. Together, these findings provide a new understanding of the function of vaspin on pancreatic β cell and suggest that it may serve as a potential agent for the prevention and treatment of type 2 diabetes.
منابع مشابه
Salvianolic acid B improves insulin secretion from interleukin 1β-treated rat pancreatic islets: The role of PI3K-Akt signaling
Background and Objective: Oxidative stress induced by proinflammatory cytokines such as IL-1β plays a major role in β-cell destruction in diabetes type 1. Salvianolic acid B (Sal B) is a polyphenolic compound with antioxidant and protective effects. Thus, objective of this study was to assess the protection exerted by Sal B on isolated rat islets exposed to IL-1β and to investigate an underlyin...
متن کاملAnti-diabetic effect of loganin by inhibiting FOXO1 nuclear translocation via PI3K/Akt signaling pathway in INS-1 cell
Objective(s): JiangTangXiaoKe (JTXK) granule, a Chinese traditional herbal formula, has been clinically used and demonstrated to be beneficial in controlling high glucose and to relieve the symptoms of Type 2 diabetes mellitus patients for decades. In this study, we explored how loganin, one of the components in JTXK granule, mediated the anti-diabetic effect.Materials and Methods: We generate...
متن کاملActivation of Wnt signaling reduces high-glucose mediated damages on skin fibroblast cells
Objective(s): High-glucose (HG) stress, a mimic of diabetes mellitus (DM) in culture cells, alters expression of a large number of genes including Wnt and NF-κB signaling-related genes; however, the role of Wnt signaling during HG-mediated fibroblast damage and the relationship between Wnt and NF-κB signaling have not been understood. In this study, we aimed to investigate the ffects of Wnt sig...
متن کاملاستفاده از مهار کننده فاکتور نسخهبرداری NF - κB در جزایر پانکراس
Background: Pancreatic islet transplantation has been reported as an appropriate method for treatment of type I diabetes patients, however there are strong indications that cytokine and chemokines secreted from transplanted islets play an important role in islet graft rejection in different stage post-transplantation. The NF-kB signaling pathway is activated in response to the stress resulted f...
متن کاملThe Role of Cyclooxygenase-2 in Signaling Pathways Promoting Colorectal Cancer
Colorectal cancer is one of the most common cancers in the world. Various factors are involved in the development and progression of this disease. One of these agents is cyclooxygenase-2 (COX-2). COX-2 is a product of the PTGS2 gene and converts free arachidonic acid to prostaglandins. COX-2 is not naturally expressed in most normal cells. Noticeably, the increased expression of COX-2 has been ...
متن کامل